QtiSAS| DAN-SANS | Screenshots

DAN-SANS. Data Reduction. Example.

Instrument:
Date of the Experiment: QtiSAS Version: DAN-SANS "Instrument":

KWS-1
March. 2020
>01.03.2021
KWS1-2020

STEP 0: Preparations

Activation: DAN-SANS

Starting of "New Session"

- 0 At QTISAS - untitled

Start NEW session

Project Explorer

QUNTITLED

STEP 1: Instrument Selection

Select Data-Reduction-Instrument: KWS1-2020

Selected: KWS1-2020

- - 1 ATISAS - untitled

Output Folder

/Users/pipich/Documents/sans/
Search for rawdata also in sub-folders

Options	Rawdata Tools	Mask	Sensitivity	Data Processing
Select [Create]	SA(N)S	Instrument \& Data-Processing-Mode		
KWS1-2020	O	(SM) Standard Mode		

Nsers/pipich/Documents/sans/
Select [Create] SA(N)S Instrument \& Data-Processing-Mode \square DAN

Instrument related parameters are "hidden" in "SA(N)S Instrument :: configuration" tab (not explained in this file)

Data :: Input and Output Folders
SA(N)S Instrument :: Configuration

Header:: Map			\hat{v}
Free ASCII format [standart]			$\hat{*}$
\checkmark "Flexible" Header I Last Line :: \$1(* Detector Data for			
	\#-Line	\#-Pos	
[Experiment-Title]	3	s_1	
[User-Name]	5	s 6	
[Sample-Run-Number]	11	1	
[Sample-Title]	16	s11	
[Sample-Thickness]	34	3	
[Sample-Position-Number]	34	1	
[Date]	5	s 8	
[Time]	5	s 9	

STEP 2: Raw-Data Path Selection

Select Path (Folder) where your data is located

Path（Folder）：selected

\Rightarrow QTISAS－untitled

Options	Rawdata Tools	Mask	Sensitivity	Data Processing	N
Select［Create］SA（N）S Instrument \＆Data－Processing－Mode					
kWS1－2020	（SM）	ard Mod		人 ${ }^{\text {a }}$（3）	

Data ：：Input and Output Folders	
Input Folder	
Jocuments／sans／qtisas－documentation／dan－sans／kws－ $1 /$ data／$/ \cdots \because$ ．	\cdots ．AT
Search for rawdata also in sub－folders	

SA（N）S Instrument ：：Configuration
\otimes
guntitled

Project Explorer

Name	Type	View	Crated	
Label				
\＃Table1	Table	Normal	03.03 .21	$12: 27$

Project Explorer
｜ $\begin{array}{lllll}\underline{\mathrm{u}} & x^{2} & x_{2} & \text { aß } & \Gamma \\ f\end{array}$

STEP 3 (optional): Data-Information-Table Generation

More tools below (not explained in this file)

Header(s) - to - Info Extractor
Step-by-step adding of
parameters to your „logbook"

columns: 3
Mask Sens Norm ROI Ascii
Image(s) - to - Info Matrix
Step-by-step adding of
Raw-matrixes to single matrix

Fast Info Extractor
Every raw-file could be investigated
Here in details

3.1 Go to Rawdata Tools tab

- - 1 \& QTISAS - Untitled

Data Processi
\qquad五 N FIT

RT :: KWS-182 :: Real Time Tools TOF :: KWS-182 :: Time Of Flight Tools

3.2 Push © Button and enter Table Name

3.3 Select Data to get Information

3.4 "info-table" is generated

[^0]STEP 4 (optional): Data "Understanding"

3 samples: $\quad \mathrm{H}-\mathrm{J}, \mathrm{H}-\mathrm{L}, \mathrm{H}-\mathrm{M}$;

3 configurations: C20D20, C8D8, C8C2 (WaveLength 4.93 A , s.aperture $12 \times 12 \mathrm{~mm}^{2}$, c.aperture $50 \times 50 \mathrm{~mm}^{2}$)

"Dark Current"

㓻info-table - Info::Table												
	Sample	Polarization	Runs[X]	C	D	lambda	Beam	Sum[Y]	Duration	cps[Y]	Date	Time
1	b4c	out	48462	8	3.265	4.930	$50.0 \times 50.015 .0 \times 5$	rre 28215	B4. 4200	0.653125	13-Jan-2020	19:18:02.00
2	ᄃo	out	03210	4	19.000	4.900	50.0x00.0112.0x12.0	-.050e+00	1000	3093	16-Mar-2020	17:00:32.00
3	H-J	out	53217	20	19.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$4.88756 \mathrm{e}+06$	1000	4887.56	16-Mar-2020	17:17:27.00
4	H-L	out	53218	20	19.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$7.17123 e+06$	1000	7171.23	16-Mar-2020	17:34:17.00
5	H-M	out	53219	20	19.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$6.08934 \mathrm{e}+06$	1000	6089.34	16-Mar-2020	17:51:07.00
6	EB	out	53220	8	7.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$3.04949 \mathrm{e}+06$	1000	3049.49	16-Mar-2020	18:22:04.00
7	H-J	out	53221	8	7.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$6.97901 \mathrm{e}+06$	1000	6979.01	16-Mar-2020	18:38:59.00
8	H-L	out	53222	8	7.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$1.03647 \mathrm{e}+07$	1000	10364.7	16-Mar-2020	18:55:49.00
9	H-M	out	53223	8	7.680	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$8.75265 \mathrm{e}+06$	1000	8752.65	16-Mar-2020	19:12:39.00
10	Plexy	out	53224	8	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$1.05809 \mathrm{e}+08$	900	117566	16-Mar-2020	19:38:28.00
11	EB	out	53225	8	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$1.19434 \mathrm{e}+07$	900	13270.4	16-Mar-2020	19:53:41.00
12	H-J	out	53226	8	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$2.4383 \mathrm{e}+07$	900	27092.2	16-Mar-2020	20:08:56.00
13	H-L	out	53227	8	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$2.68415 \mathrm{e}+07$	900	29823.9	16-Mar-2020	20:24:06.00
14	H-M	out	53228	8	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$2.56711 \mathrm{e}+07$	900	28523.4	16-Mar-2020	20:39:17.00
15	Plexy	out	53229	20	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	$7.76353 \mathrm{e}+06$	300	25878.4	16-Mar-2020	20:54:46.00
16	EB	out	53230	20	1.980	4.930	$50.0 \times 50.0112 .0 \times 12.0$	952105	300	3173.68	16-Mar-2020	20:59:59.00

Detector Dark Current : \#48462 (blocked beam with B4C;

Ask local contact to provide this file (single file will be used in all configurations)

Empty Beam/Cell

EC (Empty cell/beam) to subtract from sample's runs

Absolute Calibration Runs:

- Plexy ("flat scattering sample", like Plexiglas or H2O)
- EB ("Empty Beam")
- B4C ("Dark Current")

STEP 5: Standard Detector "Mask" Creation

Go to MASK tab

 © ० DAN

[^1]Project Explorer

```

* -
* -
Tabe Maximized Co3.03.21 12:36 Into:Table

\section*{Push button "Update": matrix "mask" will be created (updated)}


\section*{"mask" matrix is created in "DAN:: mask, sens" folder}


\section*{Plotting Example：＂Color Fill＂} －mask－DAN：Mask：14411114411411311681781801901 1－51－1－24；1－51－121－144；94－144－1－24；94－144－121－144；1－25－1－48；1－25－97－144；120－144－1－48；：120－144．．．
\(\Sigma\) all uill th 敋 \(\Sigma\) 目 \(\Sigma\) 品 \(x\)
－



\section*{Mask I Tools}

© ©
TGUNTITLED
QDAN ：：mask，sens
DAN ：script into，

Project Explorer
瞥mask
＂Dead＂rows
＂Dead＂cols
Thriangular mask（s）
－97－144；120－144－1－48；120－144－97－144；44－49－120－121；44－49－24－25；
\(\checkmark\) Beam－Stop I Direct－Beam
68 i \＆ 80 L Left－Bottom
\(78 \quad\) \＆ \(90 \quad\) Right－Top
\(78-4 \quad 90\)
Rectangle ：：Shape of Beam－Stop

\section*{（4）KWS1－2020}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Options & Rawdata Tools & Mask & Sensitivity & Data Processing & N \\
\hline
\end{tabular}
Select Active Area of Detector

Active Mask－Matrix：：GeneratelOpenlSelect
\begin{tabular}{|c|c|c|}
\hline mask & & \\
\hline \(\checkmark\) Edge & & \\
\hline x & Y & \\
\hline － & 14 & －Left－Bottom \\
\hline 144 こち & 131 & －Right－Top \\
\hline
\end{tabular}
\(\square\)
\(\square\)
0
（4）

\section*{Plotting Example: "Color Fill"}


\section*{STEP 6: Detector Sensitivity ("Sens") Reading}

KWS-1 case: ask Local Contact to provide *.sens file
In this example we use: sens-20200117.sens

\section*{Go to Sensitivity tab}


\section*{Push \\ (open) button and select *.sens file}


\section*{"sens" matrix is created in "DAN:: mask, sens" folder}



\section*{Plotting Example of "sens" matrix: "Color Fill"}


\section*{STEP 6a (optional): Change of the Color Map}

\section*{Select＂Plot details．．．＂}

图Graph2
Title


\section*{Select "Colors" tab}


\section*{Select "Color Map"}


\section*{Example: selected "default \#3: whiteblack"}


\section*{Example: selected "default \#8: royal"}


\section*{STEP 6b (alternative): Alternative Detector Sensitivity Calculation}

Other way to calculate sensitivity:
we could use a Plexiglass (Water) run with good statistics (>20000000 counts).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10 & Plexy & out & 53224 & 8 & 1.980 & 4.930 & \(50.0 \times 50.0112 .0 \times 12.0\) & \(1.05809 \mathrm{e}+08\) & 900 & 117566 \\
\hline 11 & EB & out & 53225 & 8 & 1.980 & 4.930 & \(50.0 \times 50.0112 .0 \times 12.0\) & \(1.19434 \mathrm{e}+07\) & 900 & 13270.4 \\
\hline 1 & b4c & out & 48462 & 8 & 3.265 & 4.930 & \(50.0 \times 50.015 .0 \times 5.0\) & 28215 & 43200 & 0.653125 . \\
\hline
\end{tabular}

\begin{tabular}{l|l} 
V ... Input File Numbers and Transmission ... & \\
Q 53224 & \\
Q 53225 & \# Plexiglass [ H2O, ... ] \\
Q 48462 & EC ] \\
\# B4C [Cd ] \\
O 0.4189 & Transmission
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(Q\) & 53224 & 1. Push \& Select "Plexiglass" run \\
\hline \(Q\) & 53225 & 2. Push \& Select "Empty Beam" run \\
\hline Q & 48462 & 3. Push \& Select "Dark Current" run \\
\hline \({ }^{6}\) & 0.4189 & 4. Push to calculate transmission \\
\hline \% Up & date & 5. Push to calculate sensitivity \\
\hline
\end{tabular}

This is "Alternative Detector Sensitivity Calculation" In this example we use STEP 6 method

\section*{STEP 7: Filling "Table of Configurations"}


Set Number of Instrument Configuration: in this example 3


\section*{Empty Beam/Cell Runs}


\section*{Fill: Empty Beam/Cell Runs}

\section*{\#-EC [EB]}


Script-Table Tools
2 New Add \(O\) Tr
\begin{tabular}{l|l|l|l|l|l|l}
\hline \(1[x, y]\) & \(I[Q y]\) & \(I[Q]\) & \(d l[x, y]\) & \(Q[x, y]\) & \(\gg\) File & O \(\gg\) Project
\end{tabular}


Options :: Data Processing

\section*{Fill: Detector Dark Current Runs}
DAN
```


Options :: Data Processing

Fill: Absolute Calibration Runs

Abs.Cal. [\#-FS]
Abs.Cal. [\#-EB]
Abs.Cal. [\#-BC]

Process active Script-Table

Options :: Data Processing

Options :: Data Processing

Push : Why
 to read "Plexi" to Detector Distances from Headers

Options :: Data Processing

Push: μ-[FS] to calculate mu-factor of "Plexi" for every configuration

Options :: Data Processing

Push:
 Factor

to calculate Absolute Factor for every configuration

DAN
 Mask template is created: "mask"
 Edge: 1 | 144 | $14 \mid 131$ and Beam-Stop: 68 | 78 | $80 \mid 90$.
 DAN :: Abs.Factor I Condition \#1 I $5.3390 \mathrm{E}+04 \pm 1.7510 \mathrm{E}-03$ DAN :: Abs.Factor I Condition \#2 I $1.7654 \mathrm{E}+03 \pm 2.1178 \mathrm{E}-05$ DAN :: Abs.Factor I Condition \#3 | $1.1734 \mathrm{E}+02 \pm 1.4076 \mathrm{E}-06$
 Results Log: Output

Fill: "Center "Runs

"Center "Runs: strongly scattering samples (near beam-stop) to calculate beam center positions. Often we use our standard sample "Corundum" as sample to calculate beam center positions.

Options :: Data Processing

Fill: "Center "Runs

"Center "Runs: strongly scattering samples (near beam-stop) to calculate beam center positions. One can use a typical user sample which scatters sufficiently around the beam stop. This can be checked in Rawdata Tools tab/Fast Info Extractor/Plot Matrix [Plot Active].

RT :: KWS-182 :: Real Time Tools
TOF :: KWS-182 :: Time Of Flight Tools

Push: X-center or/and №. Y-center
to calculate center of the beam for all configurations

73.514 ± 0.143	73.138 ± 0.191	72.691 ± 0.259
84.793 ± 0.066	85.597 ± 0.086	83.711 ± 0.080

! Check errors to be sure about correctness of center determination!

d_{y} Mask. Matrix	mask	\hat{v}	mask	\hat{v}	mask	\hat{v}
d_{y} Sens. Matrix	sens	\hat{v}	sens	\hat{v}	sens	\hat{v}

> "Mask" and "Sens" matrixes could be different for different configurations

Fill: Empty beam runs.

To calculate Transmission of Empty Cell

 In this example: $\mathrm{EC}=\mathrm{EB}, \operatorname{Tr}(\mathrm{EC})=1$

Options :: Data Processing

Select configuration will be used for transmission calculations. At KWS-1 normally we use C8D8 configuration for transmission calculations

Push: $\quad \operatorname{Tr}$ [EC-to-EB]
 to calculate transmission of Empty Cell (to Empty beam)

! In this example EC=EB \& $\operatorname{Tr}(E C-t o-E B)=1$!

STEP 8: Creation of "Table of Samples"

Push: 3. New to create empty script-table and than give name to it.

Empty "script" table is generated in "DAN :: script, info, ..." folder

Push :
 Add
 To add files for data reduction

Selecting of files for data reduction

"Script" table contains now 3 samples measured in 3 configurations

"Script" table structure

"Script" table structure

	\bigcirc	買script - DAN::Script::Table															
	Run-info	\#-Run[X]	\#-Condition	C	D	Lambda	Beam Size	\#-BC	\#-EC [EB]	Thickness	Transmission-Sample	Factor	X-center[Y]	Y-center[Y]	Mask	Sens	Status
1	H-J	53217	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.9061 [± 0.0012]	53390	73.514	84.793	mask	sens	
2	H-L	53218	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.8981 [± 0.0012]	53390	73.514	84.793	mask	sens	
3	H-M	53219	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	$0.9019[\pm 0.0012]$	53390	73.514	84.793	mask	sens	
4	H-J	53221	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.9061 [± 0.0012]	1765.4	73.138	85.597	mask	sens	
5	H-L	53222	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.8981 [$\pm 0.0012]$	1765.4	73.138	85.597	mask	sens	
6	H-M	53223	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	$0.9019[\pm 0.0012]$	1765.4	73.138	85.597	mask	sens	
7	H-J	53226	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9061 [± 0.0012]	117.34	72.691	83.711	mask	sens	
8	H-L	53227	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.8981 [± 0.0012]	117.34	72.691	83.711	mask	sens	
9	H-M	53228	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9019 [$\pm 0.0012]$	117.34	72.691	83.711	mask	sens	

"Script" table structure

1. Sample Name column: for smooth merging and correct transmission calculations the name of a sample should be the same in all instrument configurations. Example: "H-J" name is the same for \#53217, \#53221, \#53226 runs... Sample name could be edited in this column
2. Run Number column: "I sample"
3. Condition Number, it corresponds to column number in the table of configurations in DAN-SANS
4. Collimation Distance column
5. Sample-To-detector Distance column: "D"
6. Wave Length column: " λ "
7. Column Collimation and Sample Apertures "Beam Size"
8. Dark Current column with run numbers corresponding to the blocked beam measurements (Boron Carbonate): "I $\mathrm{IBC}^{\prime \prime}$

"Script" table structure

9. Empty Cell column: run numbers will be subtracted as EC (EB) from the sample: "IEC"
10. Sample Thickness column: "d"
11. Sample Transmission column: "Tr"
12. Absolute Calibration Factor column "AC factor"
13. X-center column " $X_{\text {center }}$ "
14. Y-center column " $Y_{\text {center }}$ "
15. Mask Matrix column: "mask"
16. Sensitivity Matrix column: "sens"
15. After-Processing-Status column
"Script" table structure: Matrix calculation for every file:

- ${ }^{-1}$				5				$\text { 9: } I_{E C}$	ript - DAN::Scrip	$\text { 11: } \mathrm{Tr}$:Table				mask		
Run-info	\#-Run[X]	\#-Condition	C	D	Lambda	Beam Size	\#-BC	\#-EC [EB]	Thickness	Transmission-Sample	Factor	X -center[Y]	Y-center[Y]	Mask	Sens	Status
$1 \mathrm{H}-\mathrm{J}$	53217	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.9061 [± 0.0012]	53390	73.514	84.793	mask	sens	
$2 \mathrm{H}-\mathrm{L}$	53218	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.8981 [$\pm 0.0012]$	53390	73.514	84.793	mask	sens	
3 H-M	53219	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	$0.9019[\pm 0.0012]$	53390	73.514	84.793	mask	sens	
$4 \mathrm{H}-\mathrm{J}$	53221	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.9061 [$\pm 0.0012]$	1765.4	73.138	85.597	mask	sens	
5 H-L	53222	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	$0.8981[\pm 0.0012]$	1765.4	73.138	85.597	mask	sens	
6 H-M	53223	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.9019 [$\pm 0.0012]$	1765.4	73.138	85.597	mask	sens	
$7 \mathrm{H}-\mathrm{J}$	53226	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	$0.9061[\pm 0.0012]$	117.34	72.691	83.71	mask	sens	
8 H-L	53227	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.8981 [$\pm 0.0012]$	117.34	72.691	83.711	mask	sens	
9 H-M	53228	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9019 [$\pm 0.0012]$	117.34	72.691	83.711	mask	sens	
	2: $I_{\text {sample }}$				6: λ		8: $I_{B C}$		10: d		$\text { 2: } \mathrm{AC}_{\text {factor }}$				16: sens	

$$
\frac{d \Sigma}{d \Omega}[i, j]=\operatorname{mask}[i, j] \cdot \operatorname{sens}[i, j] \cdot \frac{A C_{\text {factor }}}{d \cdot \operatorname{Tr}} \cdot\left(I_{\text {sample }}-I_{B C}-\operatorname{Tr} \cdot\left(I_{E C}-I_{B C}\right)\right)
$$

I: means normalized intensity

+ Dead-Time correction
+ Wide Angle corrections
In "processing" only parameters in the Script-Table is used - NOT FROM HEADERS
"Script" table structure: Wave Vector Q calculation for every file, every pixel:

$Q[i, j]=\frac{4 \pi}{\lambda} \cdot \sin \left(\tan ^{-1}\left(\frac{\text { pixel }_{\text {size }} \cdot \sqrt{\left(i-X_{\text {center }}\right)^{2}+\left(j-Y_{\text {center }}\right)^{2}}}{2 D}\right)\right)$
+ Wide Angle corrections

[Options | SA(N)S Instrument::Configuration | Detector Image]

In "processing" only parameters in the Script-Table is used - NOT FROM HEADERS
"Processing" tools/options

Data "Processing"
in 3 steps:

1. Select(Create) script table
2. Select way how data will be saved after processing:

- as tables/matrixes in the current project (">>Project")
- or as ASCII files in "Output Folder" (">>File")

3. Push one of Processing Buttons:

- I[Q] for radial averaging;
- $\mathrm{I}[\mathrm{x}, \mathrm{y}]$ for matrix generation in Cartesian coordinates;
- I $[\mathrm{Q}, \phi]$ for matrix generation in Polar coordinates;
- I[Qx] or I[Qz] for horizontal or vertical slices;
- $d \mathrm{dl}[\mathrm{x}, \mathrm{y}], \mathrm{Q}[\mathrm{x}, \mathrm{y}], \mathrm{dQ}[\mathrm{x}, \mathrm{y}], \sigma[\mathrm{x}, \mathrm{y}]$ for error-bar matrix, wave-vector matrix, error-bar matrix of wave-vector, resolution matrix...

STEP 9: Radial Averaging

```
1. Selected: "script" table
2. Selected: as tables/matrixes in the current project (">>Project")
3. Pushed: I[Q] for radial averaging;
```

Many options of the data processing are „hidden" in "Options :: Data Processing" tab (not explained here):

I [Q, ¢]	I[Qx]	$\sigma[x, y]$	dQ $[\mathrm{x}, \mathrm{y}]$

Options :: Data Processing

In "DAN:: I[Q]" folder 9 tables are created

Default Table＇s name Format

Project Explorer

Name	Type	View	Created	Label
㻃QI－SM－53217－H－J	Table	Normal	03．03．21 14：45 H－J	
曲QI－SM－53218－H－L	Table	Normal	03．03．21 14：45 H－L	
曲QI－SM－53219－H－M	Table	Normal	03．03．21 14：45 H－M	
曲QI－SM－53221－H－J	Table	Normal	03．03．21 14：45 H－J	
曲QI－SM－53222－H－L	Table	Normal	03．03．21 14：45 H－L	
㻃QI－SM－53223－H－M	Table	Normal	03．03．21 14：45 H－M	
曲QI－SM－53226－H－J	Table	Normal	03．03．21 14：45 H－J	
曲QI－SM－53227－H－L	Table	Normal	03．03．21 14：45 H－L	
曲QI－SM－53228－H－M	Table	Normal	03．03．21 14：45 H－M	

QI－SM－\＃\＃\＃\＃\＃－SampleName

QI：radial av．Mode
SM：＂Standard＂Mode
\＃\＃\＃\＃\＃：run number
SampleName：Sample Name ©

Example of Plotting of Radial Averaged Datasets

Plotting example:

1. Create empty 2D Plot

iew Graph Data Analysis 2. Menu Graph:
区ig Add/Remove Curve... select "Add/Remove Curve
2. Select Data to Plot: (H-J sample here)

$\underset{\square+y \in r}{\square}$ 4(optional). Check "+yErr":
Automatically to add also error-bars

3. Push "Add" button:

6 (optional). Push "log" for double-logarithmic presentation
4. Push "OK" button to close "Add/Remove" interface

Plotting example: result

STEP 10: Data Merging

Merging Step \#1: go to "Merge" tab (DAN-SANS) and activate "script-mergingTemplate"

Merging Step \#2: push button "Read active Table" to transfer data to Merge-interface

Merging Step \#3: push button "Merge [Project]" or "Merge[ascii]"

$15 \hat{\sigma}$ B $\| \underline{\underline{y}} x^{2} x_{2}$ oß Γ / Unicoco

Merging Result: merged tables are located in "DANP:: Merge.1D"
(1) 0 OQTISAS- untitled
 WH-J-Merged Tables >> QI-SM-53217-H-J, Q1-SM-53221-H-J, Q1-SM-53226-H-J,

| 2 | $3.248361 \mathrm{E}-03$ | $2.243431 \mathrm{E}+02$ | $6.854098 \mathrm{E}-01$ | $1.455701 \mathrm{E}-03$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

3	$3.2483951 \mathrm{E}-03$	$1.655166 \mathrm{E}+02$	$3.948253 \mathrm{E}-01$	$1.458059 \mathrm{E}-03$

4	$4.331140 \mathrm{E}-03$	$9.433806 \mathrm{E}+01$	$2.465308 \mathrm{E}-01$	$1.460775 \mathrm{E}-03$

5	$4.872527 \mathrm{E}-03$	$5.745919 \mathrm{E}+01$	$1.768180 \mathrm{E}-01$	$1.463847 \mathrm{E}-0$
6	5.413912 E	0	3.063	

6	$5.413912 \mathrm{E}-03$	$3.868344 \mathrm{E}+01$	$1.415649 \mathrm{E}-01$	$1.467273 \mathrm{E}-03$

7	$5.955295 \mathrm{E}-03$	$2.764908 \mathrm{E}+01$	$1.156358 \mathrm{E}-01$	$1.471050 \mathrm{E}-03$								
:---	:---	:---	:---	:---		8	$6.496675 \mathrm{E}-03$	$1.967770 \mathrm{E}+01$	$9.047834 \mathrm{E}-02$	$1.475176 \mathrm{E}-03$		
:---	:---	:---	:---	:---		9	$7.038053 \mathrm{E}-03$	$1.443091 \mathrm{E}+01$	$7.494643 \mathrm{E}-02$	$1.479647 \mathrm{E}-03$		
:---	:---	:---	:---	:---		10	$7.579428 \mathrm{E}-03$	$1.137449 \mathrm{E}+01$	$6.441464 \mathrm{E}-02$	$1.484462 \mathrm{E}-03$		
:---	:---	:---	:---	:---	:---		11	$8.120799 \mathrm{E}-03$	$8.607297 \mathrm{E}+00$	$5.452158 \mathrm{E}-02$	$1.489615 \mathrm{E}-03$	
:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllll}12 & 8.662168 \mathrm{E}-03 & 7.218709 \mathrm{E}+00 & 4.936526 \mathrm{E}-02 & 1.495104 \mathrm{E}-03\end{array}$	13	$9.203533 \mathrm{E}-03$	$5.556774 \mathrm{E}+00$	$4.068226 \mathrm{E}-02$	$1.500925 \mathrm{E}-03$
| :--- | ---: | ---: | ---: | ---: | | 14 | $9.744894 \mathrm{E}-03$ | $4.636202 \mathrm{E}+00$ | $3.722305 \mathrm{E}-02$ | $1.507074 \mathrm{E}-03$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $1.02825 \mathrm{E}-02$ | 3.544 E | | | | 15 | $1.028625 \mathrm{E}-02$ | $3.854444 \mathrm{E}+00$ | $3.387287 \mathrm{E}-02$ | $1.513547 \mathrm{E}-03$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | $\begin{array}{llllll}16 & 1.082760 \mathrm{E}-02 & 3.300513 \mathrm{E}+00 & 3.027671 \mathrm{E}-02 & 1.520341 \mathrm{E}-03\end{array}$

17	$1.136895 \mathrm{E}-02$	$2.826238 \mathrm{E}+00$	$2.760764 \mathrm{E}-02$	$1.527450 \mathrm{E}-03$						
:---	---:	---:	---:	---:		18	$1.191030 \mathrm{E}-02$	$2.309720 \mathrm{E}+00$	$2.369389 \mathrm{E}-02$	$1.534870 \mathrm{E}-03$
:---	---:	---:	---:	---:		19	$1.245164 \mathrm{E}-02$	$2.081745 \mathrm{E}+00$	$2.320732 \mathrm{E}-02$	$1.542597 \mathrm{E}-03$
:---	:---	:---	:---	:---		20	$1.299297 \mathrm{E}-02$	$1.832820 \mathrm{E}+00$	$2.115213 \mathrm{E}-02$	$1.550627 \mathrm{E}-03$
:---	:---	:---	:---	:---		21	$1.353430 \mathrm{E}-02$	$1.571639 \mathrm{E}+00$	$1.893052 \mathrm{E}-02$	$1.558954 \mathrm{E}-03$
:---	:---	:---	:---	:---		22	$1.407562 \mathrm{E}-02$	$1.419160 \mathrm{E}+00$	$1.768802 \mathrm{E}-02$	$1.567574 \mathrm{E}-03$		
	1.46					23	$1.461694 \mathrm{E}-02$	$1.281948 \mathrm{E}+00$	$1.635956 \mathrm{E}-02$	$1.576481 \mathrm{E}-03$		
:---	:---	:---	:---	:---								
	1.565					24	$1.515825 \mathrm{E}-02$	$1.174161 \mathrm{E}+00$	$1.577773 \mathrm{E}-02$	$1.585672 \mathrm{E}-03$		
:---	:---	:---	:---	:---								
25	$1.569956 \mathrm{E}-02$	$1.029536 \mathrm{E}+00$	$1.428914 \mathrm{E}-02$	$1.595141 \mathrm{E}-03$		25	$1.569956 \mathrm{E}-02$	$1.029536 \mathrm{E}+00$	$1.428914 \mathrm{E}-02$	$1.595141 \mathrm{E}-03$		
:---	:---	:---	:---	:---	:---	:---		26	$1.624086 \mathrm{E}-02$	$9.286797 \mathrm{E}-01$	$1.322119 \mathrm{E}-02$	$1.604883 \mathrm{E}-03$
:---	:---	:---	:---	:---	:---		27	$1.678215 \mathrm{E}-02$	$8.765793 \mathrm{E}-01$	$1.301842 \mathrm{E}-02$	$1.614894 \mathrm{E}-03$	
:---:	:---:	:---:	:---:	:---:								

28	$1.732344 \mathrm{E}-02$	$7.889049 \mathrm{E}-01$	$1.217046 \mathrm{E}-02$	$1.625168 \mathrm{E}-03$

Atter Merging: remove first: 0 points	- remove last: 0 points	0
\rightarrow Merge [project]	\rightarrow Merge [asciil]	
DAN		

© ○

TGUNTITLED
QDAN:: 1 [$]$
GDAN :: script, info,

Label
:52 Merged Tables >> Ql-SM-53217-H-J, Q1-SM-53221-H-J, Q1-SM-53226.

Plotting Example of Merged Data

Plotting example: result

STEP 11: Reduced Detector Images

\author{

1. Selected: "script" table
}
2. Selected: as tables/matrixes in the current project (">>Project")
3. Pushed: I[x,y] for radial averaging;

Problem: scattering is not ISOTROPIC

! Vertical \& Horizontal Masks!
mask-horizontal

1. Set Center of the beam-stop
2. Set Sector range.
3. Push

Mask also lower sector

mask-vertical

Script-Table Modification: adding the same

 datasets with horizontal and vertical masks

Sample Names: added suffix "-horizontal"

-
* QTISAS-/Users/pipich/Documents/sans/atisas-documentation/dan-sans/kws-1/dan-example-kws1.qti -

Sample Names: added suffix "-vertical"

fly Mask. Matrix
mask-vertical
mask-vertical $\hat{0}$ mask-vertical

+ QTISAS - /Users/pipich/Documents/sans/qtisas-documentation/dan-sans/kws-1/dan-example-kws1.qti *
Qdan-example-kws 1
QDAN: 1 Q $]$
QDAN $: I[x, y]$
QDAN: mask, sens
QDAN: script, info....

Name	Type	View	Created	Label
\#\#info-table	Table	Normal	03.03.21	6 Info:Table
爯script	Table	Maximize	03.03.21	ODAN:Script:Table
喇script-mergingTemplate T	Table	Normal	03.03.2	5 DAN:Merging:Template
"\#prript-Settings	be	Normal	03.03.2	ODAN: Settings::Table

New "script" table

- ${ }^{\text {c }}$															
Run-info	\#-Run[X$]$	\#-Condition	c	D	Lambda	Beam Size	\#-BC	\#-EC [EB]	Thickness	Transmission-Sample	Factor	X -center[Y]	γ-center[Y]	Mask	Sens
1 H-J	53217	1	20	19.68	4.930	$50 \times 50112 \times 12$	48462	53216	0.1	0.9061 [± 0.0012]	$5.3390 \mathrm{E}+04$	73.514	84.793	mask	sens
$2 \mathrm{H}-\mathrm{L}$	53218	1	20	19.68	4.930	$50 \times 50112 \times 12$	48462	53216	0.1	0.8981 [± 0.0012]	$5.3390 \mathrm{E}+04$	73.514	84.793	mask	sens
3 H-M	53219	1	20	19.68	4.930	$50 \times 50112 \times 12$	48462	53216	0.1	$0.9019[\pm 0.0012]$	$5.3390 \mathrm{E}+04$	73.514	84.793	mask	sens
$4 \mathrm{H}-\mathrm{J}$	53221	2	8	7.68	4.930	$50 \times 50112 \times 12$	48462	53220	0.1	0.9061 [± 0.0012]	$1.7654 \mathrm{E}+03$	73.138	85.597	mask	sens
$5 \mathrm{H}-\mathrm{L}$	53222	2	8	7.68	4.930	$50 \times 50112 \times 12$	48462	53220	0.1	0.8981 [± 0.0012]	$1.7654 \mathrm{E}+03$	73.138	85.597	mask	sens
6 H-M	53223	2	8	7.68	4.930	$50 \times 50112 \times 12$	48462	53220	0.1	$0.9019[\pm 0.0012]$	$1.7654 \mathrm{E}+03$	73.138	85.597	mask	sens
$7 \mathrm{H}-\mathrm{J}$	53226	3	8	1.98	4.930	$50 \times 50112 \times 12$	48462	53225	0.1	$0.9061[\pm 0.0012]$	$1.1734 \mathrm{E}+02$	72.691	83.711	mask	sens
8 H-L	53227	3	8	1.98	4.930	$50 \times 50112 \times 12$	48462	53225	0.1	0.8981 [$\pm 0.0012]$	$1.1734 \mathrm{E}+02$	72.691	83.711	mask	sens
9 H-M	53228	3	8	1.98	4.930	$50 \times 50112 \times 12$	48462	53225	0.1	0.9019 [$\pm 0.0012]$	$1.1734 \mathrm{E}+02$	72.691	83.711	mask	sens
10															
11 H -J-horizontal	53217	1	20	19.680	4.930	50x50112x12	48462	53216	0.100	0.9061 [$\pm 0.0012]$	53390	73.514	84.793	mask-horizontal	sens
12 H -L-horizontal	53218	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.8981 [$\pm 0.0012]$	53390	73.514	84.793	mask-horizontal	sens
13 H-M-horizontal	53219	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.9019 [$\pm 0.0012]$	53390	73.514	84.793	mask-horizontal	sens
14 H -J-horizontal	53221	2	8	7.680	4.930	50x50112×12	48462	53220	0.100	$0.9061[\pm 0.0012]$	1765.4	73.138	85.597	mask-horizontal	sens
15 H-L-horizontal	53222	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.8981 [$\pm 0.0012]$	1765.4	73.138	85.597	mask-horizontal	sens
16 H-M-horizontal	53223	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	0.9019 [$\pm 0.0012]$	1765.4	73.138	85.597	mask-horizontal	sens
17 H -J-horizontal	53226	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9061 [± 0.0012]	117.34	72.691	83.711	mask-horizontal	sens
18 H -L-horizontal	53227	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.8981 [$\pm 0.0012]$	117.34	72.691	83.711	mask-horizontal	sens
19 H-M-horizontal	53228	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9019 [$\pm 0.0012]$	117.34	72.691	83.711	mask-horizontal	sens
20															
21 H -J-vertical	53217	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	0.9061 [± 0.0012]	53390	73.514	84.793	mask-vertical	sens
$22 \mathrm{H}-\mathrm{L}$-vertical	53218	1	20	19.680	4.930	50x50112×12	48462	53216	0.100	$0.8981[\pm 0.0012]$	53390	73.514	84.793	mask-vertical	sens
23 H -M-vertical	53219	1	20	19.680	4.930	$50 \times 50112 \times 12$	48462	53216	0.100	$0.9019[\pm 0.0012]$	53390	73.514	84.793	mask-vertical	sens
$24 \mathrm{H}-\mathrm{J}$-vertical	53221	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	$0.9061[\pm 0.0012]$	1765.4	73.138	85.597	mask-vertical	sens
${ }^{25} \mathrm{H}-\mathrm{L}$-vertical	53222	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	$0.8981[\pm 0.0012]$	1765.4	73.138	85.597	mask-vertical	sens
26 H -M-vertical	53223	2	8	7.680	4.930	$50 \times 50112 \times 12$	48462	53220	0.100	$0.9019[\pm 0.0012]$	1765.4	73.138	85.597	mask-vertical	sens
$27 \mathrm{H}-\mathrm{J}$-vertical	53226	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9061 [± 0.0012]	117.34	72.691	83.711	mask-vertical	sens
28 H -L-vertical	53227	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.8981 [± 0.0012]	117.34	72.691	83.711	mask-vertical	sens
$29 \mathrm{H}-\mathrm{M}$-vertical	53228	3	8	1.980	4.930	$50 \times 50112 \times 12$	48462	53225	0.100	0.9019 [$\pm 0.0012]$	117.34	72.691	83.711	mask-vertical	sens

STEP 9-again: Radial Averaging

\author{

1. Selected: "script" table
}
2. Selected: as tables/matrixes in the current project (">>Project")
3. Pushed: I[Q] for radial averaging;

Every run has 3 tables

A QTISAS -/Users/pipich/Documents/sans/qtisas-documentation/dan-sans/kws-1/dan-example-kws1.qti -

 ()

- -				[
	Q[X]	IV]	dily E []	Sigma[\times Er]
1	$2.70696975 \mathrm{E}-03$	5.95856827E+02	4.59440953E+00	$1.45370264 \mathrm{E}-0$
2	3.24836128E-03	$2.24343128 \mathrm{E}+02$	$6.85409803 \mathrm{E}-01$	$1.45570088 \mathrm{E}-03$
3	3.78975149E-03	$1.65516589 \mathrm{E}+02$	3.94825283E-01	1.45805890E-03
4	4.33114016E-03	9.43380631E+01	2.46530826E-01	1.46077496E-03
5	4.87252708E-03	$5.74591868 \mathrm{E}+01$	$1.76817962 \mathrm{E}-01$	1.46384705E-0
6	$5.41391202 \mathrm{E}-03$	$3.86834393 \mathrm{E}+01$	$1.41564923 \mathrm{E}-01$	$1.46727293 \mathrm{E}-03$
7	5.95529476E-03	$2.76490833 \mathrm{E}+01$	1.15635807E-01	$1.47105013 \mathrm{E}-03$
8	6.49667508E-03	$1.96777038 \mathrm{E}+01$	$9.04783430 \mathrm{E}-02$	1.47517594E-03
9	$7.03805276 \mathrm{E}-03$	$1.44309119 \mathrm{E}+01$	$7.49464298 \mathrm{E}-02$	1.47964745E-03
10	7.57942759E-03	1.13744940E+01	6.44146418E-02	1.48446151E-03
11	8.12079933E-03	8.60729653E+00	5.45215821E-02	1.48961479E-03
12	8.66216779E-03	$7.21870939 \mathrm{E}+00$	4.93652557E-0	$1.49510379 \mathrm{E}-03$
13	9.20353272E-03	$5.55677417 \mathrm{E}+00$	$4.06822603 \mathrm{E}-02$	$1.50092482 \mathrm{E}-1$
14	$9.74489392 \mathrm{E}-03$	$4.63620229 E+00$	3.72230504E-02	$1.50707400 \mathrm{E}-$
15	$1.02862512 \mathrm{E}-02$	$3.85444418 \mathrm{E}+00$	3.38728665E-02	$1.51354734 \mathrm{E}-0$
16	$1.08276042 \mathrm{E}-02$	$3.30051293 \mathrm{E}+00$	3.02767067E-02	$1.52034069 \mathrm{E}-03$
17	1.13689529E-02	$2.82623786 \mathrm{E}+00$	$2.76076372 \mathrm{E}-02$	1.52744976E-03
18	$1.19102970 \mathrm{E}-02$	$2.30971995 \mathrm{E}+00$	$2.36938852 \mathrm{E}-02$	1.53487015E-03
19	$1.24516362 \mathrm{E}-02$	$2.08174501 \mathrm{E}+00$	$2.32073226 \mathrm{E}-02$	1.54259736E-03
20	1.29929703E-02	$1.83282018 \mathrm{E}+00$	$2.11521258 \mathrm{E}-02$	1.55062679E-03
21	1.35342992E-02	$1.57163873 \mathrm{E}+00$	1.89305162E-02	$1.55895376 \mathrm{E}-03$

(1) KWS1-2020					
Options	Rawdata Tools	Mask	Sensitivity	Data Processing	Merge
Table of Configurations :: Data Processing					
\times	\cdots				

	cond.\#1	cond.\#2	cond.\#3
$0^{\text {\#-EC [EB] }}$	53216	53220	53225
\% \#-BC	48462	48462	48462
$\ldots \mathrm{C}$ [m]	20	8	8
$\ldots \mathrm{D}[\mathrm{m}]$	19.680	7.680	1.980
Es, $\lambda[$] $]$	4.930	4.930	4.930

0 ©

Project Explorer
Qdan-example-kws1
QDAN $: I[Q]$
GDAN $: 1 /[x, y]$
GDAN $:$ mask, sens
GDAN: script, info....
GDANP $::$ Merge.1D

Merging Data

\# QTISAS -/Users/pipich/Documents/sans/qtisas-documentation/dan-sans/kws-1/dan-example-kws1.qti

- 0			\#\#script-mergingTemplate - DAN:Merging:Template			- ©			dan	
	$1[\mathrm{X}]$	2 M	3 [Y]	$4[\mathrm{Y}]$		E KWS1-2020				
1	H-J	Ql-SM-53217-H-J	Q1-SM-53221-H-J	Q1-SM-53226-H-J						
2	H-L	Q1-SM-53218-H-L	Q1-SM-53222-H-L	Q1-SM-53227-H-L		Options	Rawdata Tools		Sensitivity	essing Merge
3	H-M	Q1-SM-53219-H-M	Q1-SM-53223-H-M	Q1-SM-53228-H-M		Merging Options :			\square Smart merging ::	
4	H-J-horizontal	Ql-SM-53217-H-J-horizontal	Q1-SM-53221-H-J-horizontal	Q1-SM-53226-H-J-horizontal		\checkmark Nu	Number of tables for merging		- Reference column	
5	H-L-horizontal	Q1-SM-53218-H-L-horizontal	Q1-SM-53222-H-L-horizontal	Q1-SM-53227-HL-L-horizontal		9				
6	H-M-horizontal	Q1-SM-53219-H-M-horizontal	Q1-SM-53223-H-M-horizontal	Q1-SM-53228-H-M-horizontal			Number of table-sets for merging		\checkmark normalz	
7	H-J-vertical	Q1-SM-53217-H-J-vertical	Q1-SM-53221-H-J-vertical	QI-SM-53226-HJ-vertical		30\% < Overlap control			0) (plus) left-side points	
8	H-L-vertical	Ql-SM-53218-H-L-vertical	Q1-SM-53222-H-L-vertical	Q1-SM-53227-H-L-vertical		Filter (Wild Card)			(plus) right-side points	
	H-M-vertical	Q1-SM-53219-H-M-vertical	Q1-SM-53223-H-M-vertical	Q1-SM-53228-H-M-vertical		\square Indexing [Output]			- scale error-bars too	
						¢ Read from active Table			- Save as a new Table	
						New Table Name		Q-Range-1	Q-Range-2	Q-Range-
						$1 \mathrm{H}-\mathrm{J}$		Q1-SM-53217-H-J	Q1-SM-53221-H-J	Q1-SM-53226-H-J
						$2 \mathrm{H}-\mathrm{L}$		Ql-SM-53218-H-L	Q1-SM-53222-H-L	Q1-SM-53227-H-L
						$3 \mathrm{H}-\mathrm{M}$		Q1-SM-53219-H-M	Q1-SM-53223-H-M	Q1-SM-53228-H-M
						4 H --horizontal		Q1-SM-53217-H-J-horizont ${ }^{0}$	Q1-SM-53221-H-J-horizo	Q1-SM-53226-H-J-hi
						5 H -L-horizontal		Q1-SM-53218-H-L-horizont	Q1-SM-53222-H-L-horizo	Q1-SM-53227-H-L-h
						6 H -M-horizontal		Q1-SM-53219-H-M-horizon	Q1-SM-53223-H-M-horizale	Q1-SM-53228-H-M-H
						$7 \mathrm{H} \cdot \mathrm{J}$-vertical		Q1-SM-53217-H-J-vertical	Q1-SM-53221-HJ-vertice ${ }^{\text {a }}$	Q1-SM-53226-H-J-vi
						$8 \mathrm{H}-\mathrm{L}$-vertical		QI-SM-53218-H-L-vertical	Q1-SM-53222-H-L-verticie	Q1-SM-53227-H-L-V/1
						$9{ }^{\text {H-M}-\mathrm{Mertrical}}$		Q1-SM-53219-H-M-vertical	Q-SM-53223-H-M-vertic	Q1-SM-53228-H-M-v
						After Merging: remove first: 0 points) remove last: 0 points	
						\rightarrow Merge [project]			\rightarrow Merge [ascii]	
						DAN				
-					Project Explorer					
TI dan-example-kws1 qDAN :: I [Q] gDAN :: $1[x, y]$ GDAN :: mask, sens DDAN :: script, info, ... GDANP :: Merge.1D						Type Table Table N Table Table 				

Tables are ready

(\%) DAN				
Options	Rawdata Tools Mask	Sensitivity	Data Processing	Merge
Merging Options ::		- Smart merging ::		
3	Number of tables for merging		- Reference column	
9	Number of table-sets for merging	Const	人 normalization	
30\%	Overlap control		Q (plus) left-side points	
-	Filter (Wild Card)		\checkmark (plus) right-side points	
\square Indexing [Output]		- scale error-bars too		

\rightarrow Read from active Table

\rightarrow Save as a new Table

 8 H -L-vertical QL-SM-53218-H-L-vertical ${ }^{-1}$ QI-SM-53222-H-L-verticie QL-SM-53227-H-L-vert

After Merging: remove first: 0 points
emove last: 0 points
\rightarrow Merge [project] \rightarrow Merge [asciil] DAN

Plotting "H-M" sample averaged with 3 masks

[^0]:

[^1]: RT :: KWS-182 :: Real Time Tools
 TOF :: KWS-182 :: Time Of Flight Tools

